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An Observation on the Sommerfeld-Integral
Representation of the Electric Dyadic
Green’s Function for Layered Media
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Abstract —The electric dyadic Green’s function for layered dielectrics is
discussed. It is well known that for the free-space electric dyadic Green’s
function G|, evaluation of the electric field at observation points within the
source region requires specification of a “principal volume” along with the
corresponding depolarizing dyad L. Special considerations are invoked for
layered background media which are appropriate for the electromagnetics
of integrated electronics. It is shown that use of the Sommerfeld-integral
representation of the electric dyadic Green’s function leads to an innate
choice for the depolarizing dyad. A corresponding principal volume is
subsequently identified; it is demonstrated that there exists an alternative
choice for this excluding region which leads to the same depolarizing dyad.

1. INTRODUCTION

There is an increasing interest in the study of optical and

electronic circuits immersed in a layered dielectric surround.
Conventional differential-operator formulations for the fields
within these circuit devices are rendered ineffective due to the
inseparability of the applicable boundary conditions for struc-
tures having practical shapes. An integral-operator formulation,
based on the identification of equivalent volume polarization
currents, circumvents this difficulty. Construction of the integral
operator requires knowledge of the Green’s function for the
layered surround.
__A general development of the Hertzian potential Green’s dyad
G for layered dielectrics has been discussed by Bagby and
Nyquist [1]. Based on the classical method of Sommerfeld [2], the
Hertzian potential dyadic Green’s function was shown to have
scalar components represented by 2-D spectral integrals. As
asserted by Yaghjian [3], the singularity of G is seen to arise from
that part of the dyad which is the Green’s function G? (“prin-
cipal” Green’s dyad) for the unbounded-space problem. In Sec-
tion II, the development in [1] is altered slightly so that identifi-
cation of a natural depolarizing dyad L, relevant to the Green’s
dyad G* for the electric field, may subsequently be made in
Section III.

Finally, the electric field is expressed in the standard form as a
volume integration of the scalar product of G¢ with the electric
current source J. The volume of integration extends over the
support of the current density but excludes the singularity point
of G°. The excluding region is identified as the “principal
volume” which corresponds to the preferred choice of the de-
polarizing dyad as tabulated in [3]. An alternative excluding
region, which is shown to be equivalent, is suggested to be useful
in practice due to its simple form.

II. HERTZIAN POTENTIAL GREEN’S DYAD

In this section, the Hertzian potential dyadic Green’s function
is developed for the trilayered structure depicted in Fig. 1. A film
layer of thickness 7 and refractive index n, is deposited over a
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Fig. 1. Trilayered dielectric structure with sources in the cover.

substrate region (y < —t) which is characterized by index of
refraction n,. The region (y> 0) is the cover with refractive
index n, in which electric current density J, maintaining electro-
magnetic fields in all three regions, is immersed. All media are
understood to possess limitingly small dissipation. Although the
ensuing analysis may be generalized for a structure having any
number of diclectric layers with embedded currents, the situation
in Fig. 1 serves for the purpose of illustration, and provides a
useful model for the background of practical electronic and
optical integrated circuits.

Subsequent analysis assumes: i) time harmonic (e/“') depen-
dence of the solutions to Maxwell’s equations and ii) all integrals
with unspecified limits span the entire space. The Hertzian poten-
tial subject to the Lorentz gauge satisfies the Helmholtz equation

e))

in each region (i=s, f,c for substrate, film, cover). Formal
operation on (1) with the 2-D Fourier transform

F() = [[{:}e P dxdz ©)

where \ = %§ + 2{, reduces (1) to the ordinary differential equa-
tion

(V24 E2)IL, =~ J/jwe,

(8%/8y* — p2)m(X; y) = = j(N; y) /jwe, (3)

where m=F{I1}, j=F{J}, and p; =£?+{* — k2. Solution of
(3) is elementary, and may be written as a sum of primary
scattered parts. Thus this decomposition is

Dy = oy, . A I
a(\; y) —S,c{ng (N p,7) Joe. ‘dV}

W (N) e + W (N)e i (4)

where g?(N\; y, 1) =e N"e V1 /2p  and 8, is a Kronecker
delta. The coefficients W,* are determined by satisfying the
appropriate boundary conditions [1] across the dielectric inter-
faces and as y — 4 0.
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Inversion of the transform-domain potentials yields the solu-
tion to (1) with the potential in the cover region given by

Im,(r) = e ’{fg"(x y,r) ( )

dV’} d¢d¢
J(r)
we,

(2)

+ [ & () (s)
v

The reflected dyad —G;’(r|r’) has scalar components G, (r|r)

represented by 2-D Sommerfeld integrals of the generic form

e~ Poly
Gn(rir) = 5 )/f we(N) e '>—pd5d§ (6)

Each of the coefficients C,z(N) is a well-behaved function of A
in the entire £—{ plane; hence derivatives of G" may be obtained
by formally differentiating under the spectral integral. Special
attention is required in determining derivatives of the principal
part of II.

The spectral integral on the right side of (5) represents the
primary part II? of the Hertzian potential. It is shown in the
Appendix that under the assumption that J and v-J are con-
tinuous and of compact support in ¥, derivatives up to second
order of II” may be obtained by formally differentiating under
the spectral integral. Therefore,

vv-1I7(r) =ﬁf vy

{eﬁ"[fgp()\ y,r) dl )dV’

(2 7 [[vv:
{ej)”[_[vk g7 (\; y’,.)
+ffvv.{el""[fvl>yg"()\;y,r’)

) dV’]} d2?\)
.]w <

where the spatial integration has been split into regions in which
g? is continuously differentiable. Tangential derivatives (i.e.,
derivatives with respect to x and z) of the bracketed term in (7b)
operate only on e/, However, performing the derivatives with
respect to y demands additional considerations. Appropriate use
of Leibnitz’s rule [4, pp. 321-325] for differentiation under the
integral sign reveals that

a%{fy,< g7 (N y,r)
+f (/) V’}
__f <y 3yg ()‘ y’r) ( )

[,

} A (72)

( )

dv’

} )

(7b)

( )

d vV

g"(’\ y,r)

av’

( )

—g”(% y,r) dV’
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dx' dz’

Y=y

N e e Py=2) _ e 2~ J(r)
f f 2 2p. | Jwe,

(’)

—f —gf’(k »r) o
<y a)’

( )

+ —g?(N\; y,r dV’

f o ® g (niy )5

A subsequent differentiation with respect to y yields
2

“—2<f (N p,r) == ( )

dy
+[y1 2" (N; y,r) ( )dV’}
92 J(r)
Ty N el
+f :zzg(x ) s )dV’

8 e Py

N 9 e P »
—INT -

+f f { 2p. 3y 2p
J(r) }

dx’'dz’

y =y

Jwe,

gp()\ y’r) (’) av’

(')

-/,
..
—ff-J(xj%ze‘f""' dx’'dz’

so that (7b) becomes

3y 2g PN y,r) dV’

vv-II7(r)
—ff[fg()\ r,r). QdV’ d*A
_ 1 f y‘ly(‘xl5 y’Z,) _jk.r’d 'dz’ j)\-rd2>\
(2,”)2 ff / Jwe, ¢ ey
( ) >
/f d*A—L- J(r)/jwe, (8)
where L = 9 and the dyad g is given by the expression
P
(}\ ) vV [en\-(r—r’)e—pc(y—y')/gﬂ2pc] s y'<y
r,r')=
vv[er r=g=ry' =9 /8n2p |, y'>y.
©)

The term L-J was extracted from exploitation of the Fourier
inversion theorem [5, p. 315}, and is found to correspond exactly
with that exposed in [3] for a “pillbox™ principal volume. The
form of g suggests that the “slice” exclusion in Fig. 2 might be a
more natural principal volume pertaining to L. This assertion is
verified in part B of Section III.
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Fig. 2. A “slice” principal volume excluding the singularity point of the
electric dyadic Green’s function: closed surface S; is the boundary of the
slice volume.

III. Erectric Dyapic GREEN’S FUNCTION
A. Development of the Principal Dyad

The electric field E is related to the Hertzian potential by
E = (k2 +v v )L Using (8), the principal part of the field may
be written as

E7(r) = jono [ { LX) a() dV’} 42\

—L-J(r)/jeoe,
where the dyad g°=g/k2 +(1/4n)IgPe’ ",

Equation (10) is a useful expression for the principal part of
the electric field due to the simple nature of the integrand
appearing in the volume integral. However, (10) is not written in
the standard form as a volume integration of the scalar product
of a Green’s dyad with the electric current density. The depolariz-
ing dyad L has manifested itself naturally. Recognizing that the
corresponding “principal volume” is a pillbox [3] yields the
standard form for the electric field: ’

(10)

E?(r) = jop lim f G*(r,r)-J(r')dV' — L-J(r)/jwe,
v V—u
(11)

where v is a pillbox excluding the singularity of G° at r and G*
is given by

Ge(r,r)
- N e
( vv/ke ff 2(277) P.
= _ —pY' ~¥)
T+ov/kd) [[er g2\,  y'>).
(o) [~ Sy,

(12)

B. Egquivalence of Principal Volumes

The principal volume v in (11) was identified to be a pilibox as
tabulated in [3]). A more useful, and equivalent, exclusion is the
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“slice” volume shown in Fig, 2. Starting with the common
representation for the free-space Green’s function (r|r') =
e /"= /4q|r — |, it may be shown that for a “slice” principal
volume, the correction term E“(r) for the electric dyadic Green’s
function for field points in the source region is

ES(r) =~ Jim [ 9y (rir) i

e A J(r') dS’

(13)
where Sy is shown in Fig. 2. The correction term above is now
shown to be equivalent to the correction term corresponding to a
pillbox principal volume. The surface integral term in (13) is split
into integrations over S, and S, (planes at y + 8, respectively).
This yields for (13)

EC(r)=_Jwe 5 0{ fV"P(l’lr)ly_y+5

J(x', y+8,2") dx'dz’

+/; V() |y —ys (X', y—8,2%) dx’dz’}. (14)
2

As §—-0, S, approaches S, and J(x',y+8,z’) approaches
J,(x’, y — 8, 2) due to the smoothness of the boundary of ¥ and
the continuity of J at y’= y. Thus, (14) simplifies to

()——

jwe, 5

fV Y(rlPY 230 (% po2’) dx'dz’ (15)

Y =y—8

where S extends over the x’-z’ pizme. Expressing v’y in Carte-
sian form as

e Jk R
v/‘il/(rlrl) = ( - jk(‘ —‘1/R) 4WR2

[2(x"=x) + 3(y' = )+ 2(2'— 2)]

where R = |r — r’|, it is found that

e JkcRs

VY RS = (= ke =1/R) 528 (16)

where Ry=[(x — x)2 +(z— z)* + 8”1'/%. Substitution of (16)
into (15) yields

E(r)=
(r Jwe, 8

{ﬁ [28(- jk.~1/Rs)
-0 S

e“Jk Rs

" RQ_J(x sy, 2y dx’ dz} 17)

The integral in (17) may be decomposed into the sum of
integrals over § — C, and C,. C, is a circle centered at (x, z) with
radius ». As 8 — 0, integration over S — C, vanishes. If » is
chosen sufficiently small, then J,(x’, y, z") = J () and e /%R =
1 so that (17) becomes

jk,+1/R,

18
27R2 (182)

E(r)=— %yJ (r) Jim {s[ dx’dz'}
(r) hm{afz"d f’k 175 dp} (18b)

v }» +1/k
r.(r) hm{st /apdp}

(18c)
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where 7, = (p? + 82)!/2, In going from (18a) to (18b), integration
over C, has been transformed to polar coordinates. Performing
the angular integration is trivial and yields (18c). Noting that the
integrand in (18c) is a perfect differential, the term in braces
becomes

[ F v dp=a{ kil +7) (7 +22) Y,
- 8{ jk, [1n(»> +82)" ~1n3]
+[1/a—(v2+‘82)'1/2]}
=1 (as8—0). (19)

Finally, substitution of (19) into (18¢) yields
1 ~
E(r)=———3/(r)
Jwe

which is precisely the same correction term appearing in (11).
Therefore integration excluding a “slice” principal volume is
equivalent to a pillbox exclusion, and evaluation of (11) may use
either of these volumes.

IV. CONCLUSIONS

In the study of layered-media electromagnetics, Sommerfeld
integrals are used to represent scalar components of the electric
dyadic Green’s function. The principal part of the electric field
may be written as a sum of a spectral integral along with a
correction term that appears naturally. The spectral integration
may be replaced with the more standard volume integral as in
(11). Recognition of the depolarizing dyad, which has manifested
itself innately, identifies the appropriate principal volume (a
pillbox). An equivalent excluding region to the pillbox is sug-
gested to be useful in practice due to its simple form.

APPENDIX

It is now shown that the differentiation under the spectral
integral as in (7) is a legitimate operation. Without loss of
generality, justifying this interchange of operations for the follow-
ing is sufficient:

I Vv'[eﬁ"fg”()\;y,r’)l(r’)dV’ 2. (Al)
A>k, Vv

In (Al), k, is the real part of k.. Evaluation of p, is made on the
Riemann sheet with Re{ p } > 0.

Assuming that J and v-J are continuous and have compact
support in ¥, use of the vector identity V- {p4} = ¢V -4 + V-4
along with the divergence theorem on (Al) yields

ffbk vv~[e/" 'ngP(x; y, 7)) J(r) dV’] d>\

=f-/>l>k,v [eJNerV’.J(r’)gP(}\; y’r/) dV’] 42\

—ply—Vl

=./‘-/);>k,v I:el)vrfp{v'..[(r/)}i.ipc_dyl] d2A (AZ)
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where F{v-J} is the Fourier transform of v-J as defined by
).

Next, use p,=p, + jp,, where p. and p, are the real and
imaginary parts of p,, respectively. The exponential e™7~1 ig
of constant sign for all y. By the generalized first mean value
theorem for integrals [4, p. 117)], the right side of (21) may be
written as

I..¥

ac e~ Py
Tl dy/} a2A
2p.

g™ ’Re{ F{ V"J(x’, 7, Z’)} e"lp,ly—nl}

Ymn

" Jf'/;\> krv [ej)\ 'Im{ F{VI‘J(X',H, z’)} e*Jp,I,v—9|}

e taed
g dy’} d*\ (A3)

Ymin sz

where i, <(0,0) < yge (J=0 for all 3 < yun, ¥ Yinax)-
The spatial integration in (22) is trivial and leads to

IL..T

e/t ’Re{F{V-J(x’,n,z’)}

o(p;»)

.effp,lyvnl}
2p.p.

] d*a

+jf'/;\>k,v [ef)‘"Im{F{V'-J(x’,ﬂ,z’)}

o(p; )

.e—/p.ly—ﬂl}
2p.p.

} d*\ (A%)

where @(p,; y) = {2— e 70 Vmn) — " PrUma= ) Since - J is
continuous and of compact support in ¥, v-J & L? (ie., the
space of square integrable functions). In particular, for each y,
v-J is an L? function in the §{-z plane. Using a standard
theorem from Fourier transform theory [5, pp. 310-313], the 2-D
Fourier transform of v-J is an I* function in the £—{ plane.
Thus, F{v-J}=0(A"17) as (A = o0, ¢> 0). The integrand in
(Ad) is dominated in magnitude by a function which is indepen-
dent of r and O(A"27¢). The Weierstrauss M test [4, p. 470]
guarantees that the integral in (A4) converges uniformly, whereby
a standard theorem from advanced calculus [4, p. 474] justifies
the interchange of differentiation and spectral integration.
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