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An Observation on the Sommerfeld-Integrai

Representation of the Electric Dyadic

Green’s Function for Layered Media

MARK S. VIOLA AND DENNIS P. NYQUIST, MEMBER,lEEE

Abstract —The electric dyadic Green’s function for layered dielectrics is

discussedLIt is well known that for the free-space electric dyadic Green’s

function ?& evahsation of the electric field at observation points witfdn the

source region requires specificatkyn of a “principal volume” along with the

comesponding depolarizing dyad ~. Speciaf considerations are invoked for

layered background media which are appropriate for the electromaguetics

of integrated electronics. It is shown that use of the Sommerfeld-integraf

representation of the electric dyadlc Green’s function leads to an innate

choice for the depolarizhg dyad. A corresponding principaf volume is

subsequently identified, it is demonstrated that there exists an alternative

choice for this .excksding region which leads to the same depolarizing dyad.

I. INTRODUCTION

There is an increasing interest in the study of optical and

electronic circuits immersed in a layered dielectric surround.

Conventionrd differential-operator formulations for the fields

within these circuit devices are rendered ineffective due to the

inseparability of the applicable boundary conditions for struc-

tures having practical shapes. Au integral-operator formulation,

based on the identification of equivalent volume polarization

currents, circumvents this difficulty. Construction of the integral

operator requires knowledge of the Green’s function for the

layered surround.

_A general development of the Hertzian potential Green’s dyad

~ for layered dielectrics has been discussed by Bagby and

Nyquist [1]. Based on the classical method of Sommerfeld [2], the

Hertzian potential dyadic Green’s function was shown to have

scalar components represented by 2-D spectral integrals. As—
asserted by Yaghjian [3], the singularity of ~ is seen to_tise from

that part of the dyad which is the Green’s function @ (“ prin-

cipal” Green’s dyad) for the unbounded-space problem. In Sec-

tion II, the development in [1] is altere~ slightly so that identifi-

cation of a natural depolarizing dyad L, relevant to the Green’s

dyad @ for the electric field, may subsequently be made in

Section III.

Finally, the electric field is expressed in the_standard form as a

volume integration of the scrdar product of @ with the electric

current source J. The volume of integration extends over the

support of the current density but excludes the singularity point

of @. The excluding region is identified as the “principal

volume” which corresponds to the preferred choice of the de-

polarizing dyad as tabulated in [3]. Ars alternative excluding

region, which is shown to be equivalent, is suggested to be useful

in practice due to its simple form.

H. HERTZIAN POTENTIAL GREEN’S DYAD

In this section, the Hertzian potential dyadic Green’s function

is developed for the trilayered structure depicted in Fig. 1. A film

laYer of thickness t and refractive index rzf is deposited over a

Manuscript received August 10, 1987; revised March 31, 1988. Thrs work
was supported in part by the Nationsl Science Foundation onder Grant
ECS-8611958.

The authors are with the Department of Electrical Engineering and Systems
Science, Michigan State University, East Lansing, MI 48824.

IEEE Log Number 8821764.

region 1 t y > 0

(cover )‘c oJ

r’
v

y=o L -x

region 2: -t < y < 0
-ml- -m

‘f
(film)

r~ion 31 y c -t

( wb~trato )
‘8

Fig. 1. Trilayered dielectric structure with sources in the cover.

substrate region (y < – t) which is characterized by index of

refraction n~. The region (y> O) is the cover with refractive

index nC in which electric current density J, maintaining electro-

magnetic fields in all three regions, is immersed. All media are

understood to possess limitingly small dissipation. Although the

ensuing analysis may be generalized for a structure having any

number of dielectric layers with emb(sdded currents, the situation

in Fig. 1 serves for the purpose of illustration, and provides a

useful model for the background of practical electronic and

optical integrated circuits.

Subsequent analysis assumes: i) time harmonic (e@) depen-

dence of the solutions to Maxwell’s equations and ii) all integrals

with unspecified limits span the entire space. T’he Hertziau poten-

tial subject to the Lorentz gauge satisfies the Hehnholtz equation

(V’+ fy)n, ‘- J/j@cc (1)

in each region (i =s, f, c for substrate, film, cover). Formaf

operation on (1) with the 2-D Fourier transform

F{. } =JJ{. }e-Jx’’dxdz (2)

where X = 2$ + .?{, reduces (1) to the ordinary differential equa-

tion

( (?’/dy2 - p;)m(k y) ‘ -.i(h; Y)/J% (3)

where T = F{ II}, j= F{ J}, and p: = $2 +{2 – k;. Solution of

(3) is elementary, and may be written as a sum of primary

scattered parts. Thus this decomposition is

{J J( r’)
Vr(x; y) =8,, — <dv’gp(~; Y,r’)

v J(AXC
)

– Ar’e-pcly-.v’l /2pc, ~d ~, is a Kroneckerwhere gP(A; y, r’) = e J

delta. The coefficients ~ * are d~:termined b; satisfying the

appropriate boundary conditions [1] across the dielectric inter-

faces and as y+~eo.
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Inversion of the transform-domain potentials yields the solu-

J/ {[

~–P=(Y–Y’)

1}
~-Pc(Y’-Y) J( ~’)

tion to (1) with the potential in the cover region given by + ~–1~ r’ —

2P. 2pc
dx’dz’

jwcc

~~~e’xr{/Vg’(~;~,r’)~dV’) d~d{

y=y

‘c(r) = (2T)
J

J( r’)
. 3gp(A; y,r’)- dv’

J( r’)
y’<yay J6XC

/
+ ~(rlr’).~ all”. (5)

J6X,

/

J(r’)
v + ‘gp(X; y,r’)- dV’.

y’>ydy J(J(c
T& reflected dyad @(rlr’) has scalar components G.P(rlr’)

represented by 2-D Sommerfeld integrals of the generic form A subsequent differentiation with respect to y yields

+f~~a,(~)dk(’-”)‘-’c’’+”)dfd{ (~)

‘aB(r’r’) = (2*) 2P,

az
-(J

J( r’)
gp(A; y,r’)- dv’

ayz y’< y J6Xc

Each of the coefficients Cap(X) is a well-behaved function of h

in the entire &– ( plane; hence derivatives of Gr may be obtained +~,>#(x;YjO~dv’}

by formally differentiating under the spectral integral. Special

attention is required in determining derivatives of the principal

J

az J( r’)

part of H.
. ~gp(~; y,r’)— dv’

~~<yay jucC
The spectral integral on the right side of (5) represents the

primary part II’ of the Hertzian potential. It is shown in the

J

az J( r’)

Appendix that under the assumption that J and v. J are con-
+ ~gp(~; y,r’)— dV’

Yr>yay jOsC
tinuous and of compact support in V, derivatives up to second

order of IIP may be obtained by formally differentiating under

JJ ([

8 e-Pc(Y-Y’) a e-P.(Y’-Y)

the spectral integral, Therefore, + e–J~.r’ — ——
ay 2pc ay ‘2P. 1

VV” IIp(r) =AJJvv.
(277)2

{ [JA..
J( r’)

e] gJ’(N; y, r’) 1}—dv’ d2A
v jocc

1

(J.1= (27r)2 ‘v”

{ [J?.., J( r’)
e]

gp(~; y,.’) 1)—dV’ d2/1
y’<’ J(.XC

+JJvv”{e’k”r[~>; ’(~;y”)

J( r’)
.— 1))dv’ d2/1

jcoc,

J( r’)
.—

}

dx’dz’
jucC

~,=y

(7a)

J

a2 J( r’)
.

~gp(A; y,r’)- dV
Yt<yay J(JX,

(7b)

where the spatial integration has been split into regions in which

gp is continuously differentiable. Tangential derivatives (i.e.,

derivatives with respect to x and z) of the bracketed term in (7b)
x. ~ However, performing the derivatives withoperate only on e] .

respect to y demands additiond considerations. Appropriate use

of Leibnitz’s rule [4, pp. 321–325] for differentiation under the

integral sign reveals that

a
+

J( r’)
gp(k; y,r’) — dv’ay ~t<y jOcC

+/ gp(~; y,r’)#dV’}
y’> y

J

a J( r’)
. —gp(A; y,r’)- dv’

Y<<yay JcMC

J
a J( r’)

+ —gp(A; y,r’)~ dV
“>’ ay JLIXC

J
82 J( r’)

+ ~gp(x; y,r’)- dv’
Y,>yay J(MC

J/

J(x’, y,z’)
— ~–1~+ dx!dz!

jucC

so that (7b) becomes

VV. IIp(r)

J.([J( J( r’)
. ~ A;r, r’).- 1dv’ d2A

v JO(C

1

JJ{JJ

jJY(x’, y, Z’)

- (2T)2
~–J~.r’

}

dx’dz’ e’k’r dz~
ju6C

JJ[J (

J( r’)
. ~ X; r,r’).

1

— dV’ dz~ – ~. J(r)/jucc (8)
v jwcC

.
where L = j$ and the dyad ~ is given by the expression

{

v v [ eJk (r-r’) e-Pc(Y-Y’)/8m2Pc], y’<y
~(k; r,r’) =

V V [ eJA (r-?’) e-Pc(Y’-Y)/872Pc], y’> y.

(9)

The term ~. J was extracted from exploitation of the Fourier

inversion theorem [5, p. 315], and is found to correspond exactly

with that exposed in [3] for a “ pillbox” principal volume. The

form of ~ suggests that the “slice” exclusion i~ Fig. 2 might be a

more natural principal volume pertaining to ~. This assertion is

verified in part B of Section III.
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Fig, 2. A “slice” principal volume excluding the singularity point of the

electric dyadic Green’s function; closed surface S8 is the boundary of the

slice volume.

III. ELECTRIC DYADIC GREEN’S FUNCTION

A. Development of the Principal Dyad

The electric field E is related to the Hertzian potential by

E = (k? + v v .) II. Using (8), the principal part of the field may

be written as

/./(/ (~p(r) = – j~/Jo “. )~X; r,r’) ..f(r’) W’ d2A

– z.J(r)/jcxc (lo)

where the ciyad E’ = ~/k~ + (1/4w2)fgJ’eJx”r.

Equation (10) is a useful expression for the principal part of

the electric field due to the simple nature ~f the integrand

appearing in the volume integral. However, (10] is not written in

the standard form as a volume integration of the scalar product

of a GreenJs dyad with the electric current density. The depolariz-

ing dyad ~ has manifested itself naturally. Recognizing that the

corresponding “principal volume” is a pillbox [3] yields the

standard form for the electric field:

where v is a pillbox excluding the singularity of ?? at r and ~

is given by

G’(r, r’)

[

,,

(f+ Y7V,k:)jjeJA(r-r’)e-pc(J;y)d2A, y’<y
2(297) pc

.

e–Pc(Y’–J’)

(~+ vv/k~)//eJi’(y-r’) d’1, y’> y.
2(27r)2pc

(12)

B. Equivalence of Principal Volumes

The principal volume u in (11) was identified to be a pillbox as

tabulated in [3]. A more useful, and equivalent, exclusion is the

“slice” volume shown in Fig. 2. Starting with the common

representation for the free-space Green’s function # (rJr’) =
e–J~.lr–F’l/4mlr – r’[, it maY be Sho,wn that for a “slice” principal

volume, the correction term Et(r) for the electric dyadic Green’s

function for field points in the source region is

where S, is shown in Fig. 2. The correction term above is now

shown ,to be equivalent to the correction term corresponding to a

pillbox principal volume. The surface integral term in (13) is split

into integrations over S1 and ~ (lplanes at y + S, respectively).

This yields for (13)

1
~~(r)=–

{/
—Iim – V’$(]”lr’)lY, =Y+a
JJ6C 8+ o S,

.~Y(X’, y + 8, Z’) dx’dz’

)
+~ V’Y(rlr’)lY=”-~~Y(x’,y-~,z’)dx’dz’ (14)

s>

As 8 + O, S1 approaches Sz and JY(x’, y +8, z’) approaches

JY(x’, y – 8, z’) due to the smoothness of the boundwy of V and

the continuity of J at y’= y. Thus, (14) simplifies to

where S extends over the x’– z’ plane. Expressing v‘+ in Carte-

sian form as

e–J&.Q

V’+(rlr’) = ( – jkc –l/R)=

.[i(x’-- x)+j(y)+ ~(z~z)]- z)]

where R = IF-– r’1, it is found +at

where R8 = [(x – X’)2 + (z – Z’)2 +- 82]1/2. Substitution of (16)

into (15) yields

E’(r) . ~

{
lim $&8( – jk, .-l/R,)

j6.xc 8 + o

e–]k~a

). ‘-{,(X’, y, Z’) dx’dz’ . (17)
4TR;:

The integral in (17) may be decomposed into the sum of

integrals over S – CV and CV. Cu is a circle centered at (x, z) with

radius v. As 8 + O, integration over S – Cv vanishes. If v is

chosen sufficiently small, then J (x’, y, z’) = JY( r) and e–JkcR8 =

1 so that (17) becomes

(/E’(r) = – ‘jJ, (r) lim 8 ~k~~~a dx’dz’
}

(18a)
jticc 8+0 c“ 8

1

{J /

2$7 VJ”kC+ l/r8
— — j~, ( r) ~fi+mo 8 dq

)
pdp (18b)

= jcoe, o 0 2~r~

1

(/

vJ“kc + l/r8
—— — —jUY(r) ~li+mo 80 –— p dp

)
(18c)

jtic, r82
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where rj = ( p2 + 82)1/2. In going from (18a) to (18b), integration

over C., has been transformed to Polar coordinates. Performing

the angular integration is trivial and yields (18c). Notin

integrand in (18c) is a perfect differential, the term

becomes

8j ,:‘jkC+1’r8p dp=8(jkC ln(p2+82)’’2– (p2+82
o

=a(jkC[ln(r2 +82)1’2 -lni3]

[+ l/8–(v2+8~)-1’2 1]

=1 (as8~O).

Finally, substitution of (19) into (18c) yields

1
&(r) = – —jJ(r)

jucc

which is precisely the same correction term

that th;

n braces

– 1/2 v

IIo

(19)

appearing in (11).

Therefore’ integration excluding a “slice” pri~;ipal ;olume k

equivalent to a pillbox exclusion, and evaluation of (11) may use

either of these volumes.

IV. CONCLUSIONS

In the study of layered-media electromagnetic, Sommerfeld

integrals are used to represent scalar components of the electric

dyadic Green’s function. The principal part of the electric field

may be written as a sum of a spectral integral along with a

correction term that appears naturally. The spectraf integration

may be replaced with the more standard volume integral as in

(11). Recognition of the depolarizing dyad, which has manifested

itself innately, identifies the appropriate principal volume (a

pillbox). An equivalent excluding region to the pillbox is sug-

gested to be useful in practice due to its simple form.

APPENDIX

It is now shown that the differentiation under the spectral

integral as in (7) is a legitimate operation. Without loss of

generality, justifying this interchange of operations for the follow-

ing is sufficient:

JY [f~~.~]~r

A>kr 1
gp(~; y,r’)J(r’) dV’ d2A. (Al)

v

In (Al), kr is the real part of kc. Evaluation of p= is made on the

Riemann sheet with Re { p, } >0.

Assuming that J and v. J are continuous and have compact

support in V, use of the vector identity v. { qA } = rpv A + Vq A
along with the divergence theorem on (Al) yields

1/ [J~,kvv. elA’
I

gp(k; y,r’)J(r’) dV’ d2A
r v

‘~~>kV[eJx”r~vV’J(r’)gp(X;y,r’) dv] d2A
r

=~~>kV[eJx’rfi{ V’J(r’)} ‘-~’~’ dy’]d2A
,

(A2)

where F{ v. J } is the Fourier transform of v. .l as defined by

(2).

Next, use pc = p, + jp,, where p, and p, are the reaf and

imaginary parts of p<, respectively. The exponential e–J”l y “’l is

of constant sign for all y. By the generalized first mean value

theorem for integrals [4, p. 117], the right side of (21) may be

written as

~m=y e–PrlY–J”l

“.( 2P’ 1dy’ d2A
Ymm

+j JY [ {v eJx ‘Im F{v’. J(x’, ~, ~’)} e-JP,l.V-81

k>kr
}

Ym=e–Prl P–Y

“J 2P’ 1dy’ d2i
Yin,”

(A3)

where y~,~ < (q,8) < ym= (J= O for all y’< y~,~, y > y~,, ).

The spatiaf integration in (22) is trivial and leads to

II [v eJ {
XrRe F{v.J(X’,~~z

‘)}
A>kr

} 19(P,;Y) ~2A

. &JPrlY-71

2P,PC

+j
II [ {

v eJk”’Im F{v’.,l(x’, fl, z’))

A>k,

1

‘?(Pr; Y) d2A. e–JP,lJ–$l
}

2PrPc
(A4)

where p(pr; y) = {2— e–p,f~–J’~nJ—e–p,t~m.=-~)}. Since v .J is
continuous and of compact support in V, v. J G Lz (i.e., the

space of square integrable functions). In particular, for each y,

v -J is an L2 function in the ~– z plane. Using a standard

theorem from Fourier transform theory [5, pp. 310–313], the 2-D

Fourier transform of v. J is an L2 function in the $– { plane.

Thus, F{v.~} = O(A-l-’) as (X ~ co, c > O). The integrand in

(A4) is dominated in magnitude by a function which is indepen-

dent of r and O(Y 2-’). The Weierstrauss M test [4, p. 470]
guarantees that the integraf in (A4) converges uniformly, whereby

a standard theorem from advanced calculus [4, p. 474] justifies

the interchange of differentiation and spectral integration.
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